
Getting Started with the FEZ Hydra Kit for Microsoft .NET
Gadgeteer

Welcome to the FEZ Hydra Kit from GHI Electronics. This kit is compatible with Microsoft .NET
Gadgeteer. The FEZ Hydra Kit enables you to quickly prototype and test a wide variety of
functionality for embedded devices. This guide introduces you to the basic hardware components of
the FEZ Hydra Kit, and shows you how to create your first .NET Gadgeteer application.

.NET Gadgeteer development requires that you have Microsoft Visual Studio installed on your
computer. You can use either of the following Visual Studio packages:

• Microsoft Visual Studio 2010 - This is the full featured Visual Studio application
development suite with support for multiple programming languages.

• Microsoft Visual C# 2010 Express - A free alternative, Visual C# 2010 Express provides
lightweight, easy-to-learn and easy-to-use tools for creating applications.

•
This guide is organized into the following sections:

• Building your First .NET Gadgeteer Device
• Creating Your First .NET Gadgeteer Application
• Deploying Your .NET Gadgeteer Application
• Troubleshooting

Building your First .NET Gadgeteer Device

The FEZ Hydra Kit consists of components, which are called modules, and cables that you can use
to create various types of functionality in your device. To create your first .NET Gadgeteer device,
you will need the following parts:

• FEZ Hydra Mainboard
• A Red USB Client Single Power (USBClientSP) module
• A Joystick module
• A LED7R module
• A LightSense module
• Module connector cables

The FEZ Hydra Mainboard
The FEZ Hydra Mainboard is the most important part of the GHI Electronics FEZ Hydra Kit. The
FEZ Hydra Mainboard includes a processor and memory, as well as 14 sockets. The sockets are
outlined by a white box that surrounds the socket number (1 through 14) and groups the socket
number with a set of letters that indicate which modules can be connected to the socket.

.NET Gadgeteer-compatible hardware modules connected to the FEZ Hydra mainboard by these
sockets allow you to extend the FEZ Hydra mainboard with communication, user interaction,
sensing, and actuation capabilities.

The FEZ Hydra mainboard includes a Reset button to reboot the system. There is also a small LED
(labeled PWR) which lights up whenever the FEZ Hydra has power.

http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-csharp-express
http://www.microsoft.com/visualstudio/en-us/try
http://www.netmf.com/gadgeteer/
http://www.netmf.com/gadgeteer/
http://www.ghielectronics.com/

The USB Client Single Power Device Module

The USB Client Single Power (USBClientSP) module (colored red) enables you to connect the
FEZ Hydra Mainboard to your computer for programming and debugging. The single-powered
module is itself powered by a USB port on a computer. A USBClientSP module supplies power to
the FEZ Hydra and to any other modules that are connected to it.

Warning

Never connect more than one red module to the FEZ Hydra Mainboard at the same time.
This will damage the hardware.

The USBClientSP module has a black socket, identical to the sockets on the FEZ Hydra
Mainboard. Next to the connector, there is a letter D. This means that this particular module can
only be connected to a socket labelled D on the mainboard.

In a similar way, all .NET Gadgeteer-compatible modules have letters next to their sockets that
identify which mainboard sockets they can be connected to. Many modules are labeled with
multiple letters. This means that they can be connected to any of the labeled sockets.

The Module Connector Cable

Your hardware kit includes many module connector cables of different lengths. Apart from the
length, these cables are all identical and can be used interchangeably to connect modules to the FEZ
Hydra Mainboard. Note that all sockets have a notch and the cable headers have a protrusion that
fits into this notch, so the cables can only be inserted one way.

Connect the red USB Device module to socket number 2 on the FEZHydra Mainboard, which is
the only socket that has the letter D. Then, connect the small end of the mini USB cable provided
with the kit to the USBClientSP module. However, do not connect the other end to your
computer yet.

Warning

When plugging or unplugging any module into a FEZ Hydra socket, always make sure that
power is not connected, by unplugging either end of the mini USB cable. The mini USB
cable supplies power to the FEZ Hydra; if you plug or unplug a module on the FEZ Hydra
while it is powered, the hardware could be damaged.

After ensuring that the FEZHydra mainboard is not powered, continue by getting a Joystick
module from your hardware kit.

Turn the Joystick module over. Next to the connector is the letter A. This means that a Joystick
module can be connected to one of the sockets labeled A on a mainboard.

Get a LED7R module from your hardware kit. Turn the LED7R module over. This module has a
single connector labeled Y. Multiple Sockets on the FEZHydra mainboard support modules labeled
with the letter Y. Plug one end of a connector cable to the socket on the LED7R module and the
other end to the FEZHydra on any socket labeled Y.

Connecting the Modules to the Mainboard

The .NET Gadgeteer designer can identify the sockets on modules and on the mainboard that are
compatible. This method is described in the following section titled Using the .NET Gadgeteer
Designer UI. In this example we will connect the two previously mentioned modules, Joystick and
LED7R manually.

Warning

Make the actual connections between all modules and the mainboard before you connect the
USBClientSP to the USB port on your computer.

The following illustration shows the mainboard connected to a Joystick module, a LED7R module,
and the USBClientSP module. Now, with all the other modules connected, you can connnect the
USBClientSP module to the USB port on your computer. The Joystick will be connected to socket
13, and the LED7R will be connected to socket 7.

Creating Your First .NET Gadgeteer Application.

Start Microsoft Visual Studio 2010 or Microsoft Visual C# 2010 Express. The following
sequence will get your first .NET Gadgeteer Application up and running in less than half an hour.

To create a Visual Studio application:

1. On the File menu, select New Project....

2. On the New Project screen, under Installed Templates, expand the Visual C# category.
3. Select Gadgeteer.
4. Select .NET Gadgeteer Designer Application. Name the project GadgeteerLights.

5. Click OK.

Using the .NET Gadgeteer Designer UI

The .NET Gadgeteer Designer opens with the FEZHydra Mainboard displayed on the canvas. If
the Toolbox is not visible, click the View menu and select Toolbox. The Toolbox with a list of
installed modules will open. You can resize or hide the Toolbox to make more work space on the
canvas.

If you want to use a different mainboard, open the toolbox, and drag the mainboard icon of your
choice onto the designer surface. The following illustration shows the open toolbox with two
mainboard options.

When you drag a new mainboard to the designer surface, you'll be prompted, as shown in the
following illustration, to confirm replacement of the mainboard. All existing connections will be
removed.

To continue building the example device, open the Toolbox and drag the modules for this example
on to the work canvas. You will need the following modules:

• Joystick
• LED7R

The Designer canvas with modules is shown in the following illustration.

As indicated by the instructions in the text box on the canvas, the .NET Gadgeteer Designer will
graphically connect all the modules for you. Right click on the design surface and select Connect
all modules. You can move the modules around on the design surface to make the connections
easier to read. You can also delete any connection by right clicking on the connection and selecting
Delete. Make sure both modules are connected as in the diagram below.

To manually set a connection, click on a socket in the diagram and hold down the left mouse button.
Then you can drag a line that represents the connection from a module socket to a mainboard socket
or in the opposite direction from the mainboard to a module. The sockets that the module can use
will light up in green, as shown in the following illustration.

Writing Code for Devices that use .NET Gadgeteer Modules

To specify what the modules should do in this application, now edit the Program.cs file. The
following illustration shows the Program.cs file open in Visual Studio.

When using the designer, the modules are automatically instantiated by auto-generated code. This
code can be found in the file Program.Generated.cs, but during normal use it is not necessary to
view this file, and this file should not be edited because the Designer will automatically regenerate
it and undo any direct changes made to it. The Program.Generated.cs file is shown in the
following snippet.

The Joystick Button Pressed Event and Delegate Method

Next, you generate code that will enable the program to react to a button press. To do this, assign an
event handler for the Joystick.JoystickPressed event. The IntelliSense feature of Visual Studio
makes this process very easy.

In the Program.cs file, after the comment that reads:

 Initialize event handlers here.

Type joystick.(joystick followed by a period). IntelliSense displays a list of properties, methods and
events as shown in the following illustration.

Using the arrow keys, select JoystickPressed. Then type += (plus sign followed by an equals sign).
IntelliSense offers option to automatically insert the rest of the declaration:

Press TAB to confirm. IntelliSense offers to automatically generate a delegate method to handle the
event:

Press TAB to confirm. The following code is generated:

This event handler will be called each time the joystick's button is pressed. Delete the following line
from the method:

 throw new NotImplementedException();

And replace it with:

 Debug.Print("Joystick Pressed");
lED7R.TurnLightOff(7);

This will be explained in a moment. Repeat the same process for Joystick Released, including this
code in the handler.

 Debug.Print("Joystick Released");
lED7R.TurnLightOn(7, true);

Now when the Joystick button is pressed and released, the LED7R module will flash the middle
red light.

The LightSense Module

The LightSense module measures the current exposure to light. You can use the JoystickPressed
event to display the current exposure to light.

We will connect this module in the same way we did with the previous two. This module requires
socket type A, so the only remaining socket available is socket 14. Connet the module both
physically and in the designer, then save the file.

When the JoystickPressed event occurs, you can get the light exposure percentage and display it by
using the following code:

 Debug.Print("Light Sensor %: " + lightSensor.ReadLightSensorPercentage());

Complete Application Code

All the code for a .NET Gadgeteer Application that reads the Joystick button state, turns a light on
and off, and reads the LightSense light exposure percentage is shown in the following example.

Deploying Your .NET Gadgeteer Application

To deploy this application to a mainboard and begin running it, select Start Debugging from the
Debug menu, or press F5.

Make sure that the Output Window is visible by pressing the CTRL + ALT + O key combination
on your keyboard. If you have enabled sounds, you should hear Windows make the "USB
disconnected" sound, followed by the "USB connected" sound as the Mainboard reboots. The
Output Window should show the process of loading various files and assemblies. The final line,
which appears once the application begins to run, should read Program Started.

Running the .NET Gadgeteer Device

When you see Program Started appear on the Output window, you can start pressing the Joystick
button. Cover the LightSense module, and push the Joystick button. The current light percentage
will be displayed in the output window where you saw "Program Started". If it works -
congratulations! You have completed your first .NET Gadgeteer application.

To exit debugging mode, select Stop Debugging from the Debug menu, or press Shift + F5.

Adding Timed Actions for an Interactive Light Show

An interesting extension of the light application in the previous example is programming the
application to change the lights based on the Joystick position automatically at an interval set by an
instance of the GT.Timer class.

To create an instance of the GT.Timer class, add the following global variable to the Program class,
as shown in the following example. This line of code initializes the GT.Timer to raise the Tick event
at an interval of 100 milliseconds (0.1 seconds).

GT.Timer timer = new GT.Timer(100);

Create the delegate to handle the GT.Timer.Tick event, and start the timer. The following code
shows the set-up in the ProgramStarted method.

The implementation of the GT.Timer.Tick event is shown in the following example. This will read
the Joystick position, and turn the appropriate light on the LED7R on.

The following code contains all the code for the modules with timer. The boxes show the changes to the
previous example.

Troubleshooting

This section describes common issues that you may encounter and provides suggestions on how to
fix them.

Set-up Issues

If VS is running when you install GadgeteerCore, you’ll need to close and restart it before creating
your first project. Otherwise you won’t see the .NET Gadgeteer Application template.

You may need to change the USB name of the target mainboard in your first project. The most
efficient way to do this is using the MFDeploy tool.

Sometimes VS will hang at the display: “The debugging target is not in an initialized state;
rebooting”. Push the reset button on the mainboard to fix this.

If you’re using the Display_T35 and see a null reference exception on startup, verify that the touch
socket is connected both in the designer and on the module.

If you’re using a laptop and you see errors on deployment like “Please check your hardware”, try
plugging a 7 volt DC power supply into the USBClientSP module.

Compile Time Errors

If you receive compilation errors when you attempt to deploy and run your application, read the
error message carefully. Most errors fall into one of two categories:

• Syntax: A statement is missing required syntax, for example, the ending semi-colon
character. These types of errors are generally reported unambiguously in the Error output
window. Fix the syntax problem and try again.

• Identifier: An identifier is unknown or invalid. This can happen if you spell the identifier
incorrectly, or do not qualify it correctly. All identifiers are case sensitive; for example,
Button cannot be entered as button. To help avoid problems with identifiers, use the
IntelliSense feature of Visual Studio. IntelliSense presents only valid identifiers.

Unexpected Application Behavior

If your application does not behave as expected (for example, pressing the button does not raise the
event), start by checking that the physical socket to which the hardware module is connected agrees
with the initializion in code of the identifier that corresponds to the module.

For example, if you connect a Button to mainboard socket 4, but initialize it to socket 8, the button
will not work.

 // Button is actually plugged into socket 4.

http://msdn.microsoft.com/en-us/library/cc544593.aspx

 button = new GTM.GHIElectronics.Button(8);

The programming model for the .NET Gadgeteer platform is event driven. Events are raised that
correspond to a hardware change or physical action. For example, when you press a button, the
ButtonPressed event is raised, and when you release it, the ButtonReleased event is raised.

You can use debug statements inside your event handlers to make sure that your handler is receiving
the event. For example, if your LED does not light when you press the button, you can insert a
statement inside the event handler for the ButtonPressed event to make sure that your button is in
fact receiving the event.

 private void Button_ButtonPressed(GTM.Button sender, GTM.Button.ButtonState state)
 {
 Debug.Print("Button Pressed");
 camera.TakePicture();
 }

When you deploy and run your application, check the Visual Studio Debug Output window for your
message. If the message does not appear at the expected time (for example, when you press the
button), make sure that the physical socket and logical initializer are in agreement, as previously
described. If they are, the button or the module connector cable might be defective. Unplug the mini
USB cable from your computer, swap the module connector cable or the button with another from
your hardware kit, recconnect the mini USB cable, and try again.

Deployment

Occasionally, you may receive an error as you attempt to deploy your application to a mainboard.
This can happen if the mainboard is not connected to your computer, or the mainboard requires a
restart. If the mainboard is disconnected, connect it and retry. If the mainboard is connected when
this happens, disconnect it from your computer (by unplugging the mini USB cable), wait a few
seconds, and reconnect it. Then try the deployment again.

Device Drivers

When you install the .NET Gadgeteer core, the device drivers that are needed to communicate with
a mainboard are also installed. This process usually does not require any intervention on your part.

In some cases, the .NET Gadgeteer core installation or kit installation might not install the device
drivers automatically. If your computer is having problems communicating with a mainboard that
you suspect are related to the device drivers, please refer to the Tiny CLR Forum or to the kit's
support forum.

http://www.tinyclr.com/forum

	Getting Started with the FEZ Hydra Kit for Microsoft .NET Gadgeteer
	Building your First .NET Gadgeteer Device
	The FEZ Hydra Mainboard
	The USB Client Single Power Device Module
	Warning
	The Module Connector Cable
	Warning
	Connecting the Modules to the Mainboard
	Warning

	Creating Your First .NET Gadgeteer Application.
	To create a Visual Studio application:
	Using the .NET Gadgeteer Designer UI
	Writing Code for Devices that use .NET Gadgeteer Modules
	The Joystick Button Pressed Event and Delegate Method
	The LightSense Module
	Complete Application Code

	Deploying Your .NET Gadgeteer Application
	Running the .NET Gadgeteer Device
	Adding Timed Actions for an Interactive Light Show

	Troubleshooting
	Set-up Issues
	Compile Time Errors
	Unexpected Application Behavior
	Deployment
	Device Drivers

