pcDuino V2
Contents

Board Overview .. 3
System Features .. 4
Single-Board Computer Configuration .. 5
Pin Assignments ... 7
Single-Board Computer Setup ... 9
Required Hardware ... 9
Optional Hardware .. 9
Adjusting Screen Settings .. 9
The Ubuntu Operating System ... 10
Accessing the Debug Port ... 10
Re-Installing the Operating System ... 11
Glossary ... 12
Board Overview

You can use the Single-Board Computer with various open-source projects, but you can do much more. The Single-Board Computer features a fully functional operating system (OS) that can simultaneously run multiple processes, giving you a much more robust and versatile experience than a dedicated microprocessor board.

The Single-Board Computer provides several ports so you can quickly and easily set up a monitor, keyboard, and mouse to create a complete computing solution.

The HDMI port lets you connect to any HDTV or monitor with an HDMI port.

The USB A port lets you connect USB peripherals. For example, you can use a USB hub to connect a keyboard, mouse, and other USB devices. The Micro USB port provides additional connectivity.

The MicroSD slot provides an easy way to add additional memory (up to 32 GB).

Note: Your Single-Board Computer is shipped in protective anti-static packaging. The board must not be subjected to high electrostatic potentials. A grounding strap or similar protective device should be used when handling the board.

System Features

System on a Chip (SoC) AllWinner A10
Central Processor (CPU) 1 GHz ARMv7 Cortex A8 Single Core
Graphics Processor (GPU) Mali 400
SDRAM Memory 1 GB, DDR3-800
Flash Memory 2 GB NAND
Mass Storage Max 32 GB
Type MicroSDHC

Video Output HDMI Up to 720p, 60 Hz
Network Interface Ethernet 10/100M via RJ45
Wireless Connectivity 802.11b/g/n
Communications I/O USB 2.0
Extension Interfaces ADC, UART, GPIO, PWM, I2C, SPI, Power
Operating System Ubuntu
Single-Board Computer Configuration

- J2 HDMI
- SW2 Upgrade (not currently implemented; reserved for future expansion)
- J12 Analog Input
- J13 Network RJ45
- SW1 Reset
- SPI Port
- J1 Digital I/O
Assignments

J11

1. GPIO8
2. GPIO9/PWM9
3. SPI SS (Subordinate/Chip Select)/GPIO10/PWM10
4. SPI0 MOSI (Master Output, Subordinate Input)/GPIO11/PWM11
5. SPI0 MISO (Master Input, Subordinate Output)/GPIO12
6. SPI0 CLK (Clock)/GPIO13
7. GND
8. AREF
9. TWI2 SDA (Data)
10. TWI2 SCK (Clock)

J8

1. GPIO0/UART2 RX
2. GPIO1/UART2 TX
3. GPIO2
4. GPIO3/PWM3
5. GPIO4
6. GPIO5/PWM5
7. GPIO6/PWM6
8. GPIO7

P6

1. SPI1 MISO (Master Input, Subordinate Output)
2. +5 VDC
3. SPI1 CLK (Clock)
4. SPI1 MOSI (Master Output, Subordinate Input)
5. RESET
6. GND

J9

1. (NC)
2. IOREF
3. RESET
4. 3.3 VDC output
5. 5 VDC output
6. GND
7. GND
8. +5 V_IN
Single-Board Computer Setup

Make USB and HDMI connections before connecting power to the Single-Board Computer. If the board does not recognize your keyboard or mouse, unplug the device and plug it back in.

Note: To ensure that your Single-Board Computer boots properly, use a short, heavy-gauge USB cable and a power supply that delivers at least 2 A.

Required Hardware
- Monitor
- HDMI cable
- USB hub
- Keyboard/Mouse
- DC power (Micro USB)

Adjusting Screen Settings

In some cases, the Ubuntu desktop may extend beyond the visible area of your monitor.

To adjust the size of your desktop:

1. Open LX Terminal.
2. At the command prompt, type: sudo setwindow 95 1 0 0
3. Press Enter.

Note: The “95” parameter sets the percentage of screen size, and the “1” activates auto-center; the remaining values are inactive for auto-center, but are still necessary for the command.

The Ubuntu Operating System

Your Single-Board Computer is preloaded with the Ubuntu 12.07 operating system. Ubuntu is a robust, fully functional operating system that provides an open-source productivity suite.

Terminal
 • Run standard Linux commands
 • Launch GCC to open the C/C++ compiler

File browser
 • Built-in file manager

Internet browser
 • Chromium web browser
 • Support for HTML5

Productivity Suite
 • Document Viewer for PDFs
 • Gnumeric for spreadsheets
 • AbiWord for documents.

If your system asks for an authentication password, the default password is “ubuntu.” For full support go to www.ubuntu.com

Accessing the Debug Port

If you are a more experienced user, you can communicate with the Single-Board Computer directly by using a USB-to-Logic Level Serial cable to connect the board’s debug port to your computer’s USB drive.

1. Go to the Single-Board Computer website and install the drivers onto your PC.

2. Connect the debug cable to the USB port on your computer and to the board’s debug port (P3). TX connects to Pin 1, which has the square pad.

3. On your PC, locate the COM port. For help locating the COM port, refer to your operating system’s online help.

4. After you locate the COM port, access the serial communications package. Verify the following settings:

 • **COM Port**: 8,N,1
 • **Baud Rate (Speed)**: 115200
5. You can now access the board’s system level.

Re-Installing the Operating System

As you consider new projects, you may decide to restore your Single-Board Computer to its original state. To accomplish this, you may need to re-install the operating system.

Note: Re-installing the Ubuntu operating system will erase all saved data from the Single-Board Computer.

To install the operating system:

1. Disconnect the power to the Single-Board Computer.

2. Insert a MicroSD card that contains a Linux kernel image into the Single-Board Computer’s MicroSD card slot.

3. Restore power to the board and wait at least 2 minutes. During this time, the TX light blinks as the Single-Board Computer installs the Linux kernel.

4. When TX stops blinking, disconnect the power to the Single-Board Computer and remove the kernel image MicroSD card.

Note: The Single-Board Computer will always check for a kernel image when power is restored. Do not insert the kernel image SD card in the slot unless you intend to install the entire operating system and erase all data on the board.

5. Restore power to the board. The RX and TX lights will remain lit for a moment, and then the TX light will begin to blink slowly while the RX light remains lit.

6. Insert a MicroSD card that contains an Ubuntu image. The TX light will begin to blink rapidly. Do NOT remove the Ubuntu image MicroSD card during this process. After the TX light stops flashing rapidly, both the RX and TX lights will blink slowly. This indicates a good image load.

7. Disconnect power to the Single-Board Computer and then remove the Ubuntu image MicroSD card.

8. Restore power to the Single-Board Computer. The operating system will boot up properly, the desktop will appear on your monitor, and the board will be ready to use.
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog-digital converter</td>
</tr>
<tr>
<td>CPU</td>
<td>Central processing unit</td>
</tr>
<tr>
<td>DDR</td>
<td>Double Data Rate, Type 3. SDRAM configuration with high bandwidth</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic discharge</td>
</tr>
<tr>
<td>Linux</td>
<td>An open source operating system</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabyte. Capacity in bytes. 1×10^9 Bytes</td>
</tr>
<tr>
<td>GHz</td>
<td>Gigahertz. Frequency in hertz. 1×10^9 hertz</td>
</tr>
<tr>
<td>GPIO</td>
<td>General purpose input/output. A digital port that can be selected by the user to function as either an input or an output.</td>
</tr>
<tr>
<td>GPU</td>
<td>Graphics processing unit</td>
</tr>
<tr>
<td>HDMI</td>
<td>High-Definition Multimedia Interface</td>
</tr>
<tr>
<td>I2C</td>
<td>Inter-Integrated Circuit, generically referred to as “two-wire interface” (TWI)</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte. Capacity in bytes. 1×10^6 bytes</td>
</tr>
<tr>
<td>Flash NAND Memory</td>
<td>Electronic non-volatile computer storage that can be electrically erased and reprogrammed. NAND-type flash memory may be written and read in blocks (or pages).</td>
</tr>
<tr>
<td>PC</td>
<td>Personal computer</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse-width modulation</td>
</tr>
<tr>
<td>RoHS</td>
<td>Restriction of Hazardous Substances Directive (EU)</td>
</tr>
<tr>
<td>SDHC</td>
<td>Secure Digital High-Capacity memory card</td>
</tr>
<tr>
<td>SDRAM</td>
<td>Synchronous dynamic random access memory</td>
</tr>
<tr>
<td>SoC</td>
<td>System on a chip</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface</td>
</tr>
<tr>
<td>Ubuntu</td>
<td>An open source operating system</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver/Transmitter. A serial communication port.</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>VDC</td>
<td>Volts of direct current</td>
</tr>
</tbody>
</table>