FDMA1024NZ
Dual N-Channel PowerTrench® MOSFET
20 V, 5.0 A, 54 mΩ

Features
- Max rDS(on) = 54 mΩ at VGS = 4.5 V, ID = 5.0 A
- Max rDS(on) = 66 mΩ at VGS = 2.5 V, ID = 4.2 A
- Max rDS(on) = 82 mΩ at VGS = 1.8 V, ID = 2.3 A
- Max rDS(on) = 114 mΩ at VGS = 1.5 V, ID = 2.0 A
- HBM ESD protection level = 1.6 kV (Note 3)
- Low profile - 0.8 mm maximum - in the new package MicroFET 2x2 mm
- RoHS Compliant
- Free from halogenated compounds and antimony oxides

FDMA1024NZ
Dual N-Channel PowerTrench® MOSFET
20 V, 5.0 A, 54 mΩ

General Description
This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses.

The MicroFET 2X2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

Applications
- Baseband Switch
- Loadswitch
- DC-DC Conversion

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DS</td>
<td>Drain to Source Voltage</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>V_GS</td>
<td>Gate to Source Voltage</td>
<td>±8</td>
<td>V</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain Current -Continuous</td>
<td>(Note 1a)</td>
<td>5.0 A</td>
</tr>
<tr>
<td></td>
<td>-Pulsed</td>
<td>6.0 A</td>
<td></td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation</td>
<td>(Note 1a)</td>
<td>1.4 W</td>
</tr>
<tr>
<td></td>
<td>(Note 1b)</td>
<td>0.7 W</td>
<td></td>
</tr>
<tr>
<td>T_J, T_STG</td>
<td>Operating and Storage Junction Temperature Range</td>
<td>-55 to +150 °C</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JJA}</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>(Note 1a)</td>
<td>86 (Single Operation) °C/W</td>
</tr>
<tr>
<td>R_{JJA}</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>(Note 1b)</td>
<td>173 (Single Operation) °C/W</td>
</tr>
<tr>
<td>R_{JJA}</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>(Note 1c)</td>
<td>69 (Dual Operation) °C/W</td>
</tr>
<tr>
<td>R_{JJA}</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>(Note 1d)</td>
<td>151 (Dual Operation) °C/W</td>
</tr>
</tbody>
</table>

Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Device Marking</th>
<th>Device</th>
<th>Package</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>FDMA1024NZ</td>
<td>MicroFET 2X2</td>
<td>7"</td>
<td>8 mm</td>
<td>3000 units</td>
</tr>
</tbody>
</table>
Electrical Characteristics \(T_J = 25 \, ^\circ C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(BVDSS)</td>
<td>Drain to Source Breakdown Voltage (I_D = 250 , \mu A, V_{GS} = 0 , V)</td>
<td>20</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta BV_{DSS})</td>
<td>Breakdown Voltage Temperature Coefficient (I_D = 250 , \mu A,) referenced to 25 °C</td>
<td>19</td>
<td>mV/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(IDSS)</td>
<td>Zero Gate Voltage Drain Current (V_{DS} = 16 , V, V_{GS} = 0 , V)</td>
<td>1</td>
<td>(\mu A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(IGSS)</td>
<td>Gate to Source Leakage Current (V_{GS} = \pm 8 , V, V_{DS} = 0 , V)</td>
<td>(\pm 10) (\mu A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On Characteristics						
\(V_{GS(th)} \)	Gate to Source Threshold Voltage \(V_{GS} = V_{DS}, I_D = 250 \, \mu A \)	0.4	0.7	1.0	V	
\(\Delta V_{GS(th)} \)	Gate to Source Threshold Voltage Temperature Coefficient \(I_D = 250 \, \mu A, \) referenced to 25 °C	-3	mV/°C			
\(r_{DS(on)} \)	Static Drain to Source On-Resistance \(V_{GS} = 4.5 \, V, I_D = 5.0 \, A \)	37	54			
	\(V_{GS} = 2.5 \, V, I_D = 4.2 \, A \)	43	66			
	\(V_{GS} = 1.8 \, V, I_D = 2.3 \, A \)	52	82			
	\(V_{GS} = 1.5 \, V, I_D = 2.0 \, A \)	67	114			
	\(V_{GS} = 4.5 \, V, I_D = 5.0 \, A, T_J = 125 \, ^\circ C \)	51	75			
\(g_{FS} \)	Forward Transconductance \(V_{DD} = 5 \, V, I_D = 5.0 \, A \)	16	75			

Dynamic Characteristics						
\(C_{iss} \)	Input Capacitance \(V_{GS} = 10 \, V, V_{GS} = 0 \, V \), \(f = 1 \, MHz \)	375	500			pF
\(C_{oss} \)	Output Capacitance \(V_{DS} = 10 \, V, V_{GS} = 0 \, V \), \(f = 1 \, MHz \)	70	95			pF
\(C_{iss} \)	Reverse Transfer Capacitance \(V_{GS} = 4.5 \, V, V_{DD} = 10 \, V \), \(f = 1 \, MHz \)	40	65			pF
\(R_G \)	Gate Resistance \(f = 1 \, MHz \)	4.3				Ω

Switching Characteristics						
\(t_{(on)} \)	Turn-On Delay Time \(V_{DD} = 10 \, V, I_D = 5.0 \, A \)	5.3		11		ns
\(t_r \)	Rise Time \(V_{GS} = 4.5 \, V, R_{GEN} = 6 \, \Omega \)	2.2		10		ns
\(t_{(off)} \)	Turn-Off Delay Time \(V_{GS} = 4.5 \, V, R_{GEN} = 6 \, \Omega \)	18		33		ns
\(t_f \)	Fall Time \(V_{GS} = 4.5 \, V, R_{GEN} = 6 \, \Omega \)	2.3		10		ns
\(Q_g \)	Total Gate Charge \(V_{GS} = 4.5 \, V, V_{DD} = 10 \, V \), \(I_D = 5.0 \, A \)	5.2		7.3		nC
\(Q_{gs} \)	Gate to Source Gate Charge \(V_{GS} = 4.5 \, V, V_{DD} = 10 \, V \), \(I_D = 5.0 \, A \)	0.6				nC
\(Q_{gd} \)	Gate to Drain "Miller" Charge \(I_D = 5.0 \, A \)	0.9				nC

Drain-Source Diode Characteristics						
\(I_S \)	Maximum Continuous Source-Drain Diode Forward Current \(V_{GS} = 0 \, V, I_S = 1.1 \, A \) (Note 2)	1.1				A
\(V_{SD} \)	Source to Drain Diode Forward Voltage \(I_D = 5.0 \, A \), \(V_{GS} = 0 \, V \)	0.7		1.2		V
\(t_{rr} \)	Reverse Recovery Time \(I_F = 5.0 \, A, \, di/dt = 100 \, A/\mu s \)	19		35		ns
\(Q_{rr} \)	Reverse Recovery Charge \(I_F = 5.0 \, A, \, di/dt = 100 \, A/\mu s \)	5		10		nC
Notes:

1. \(R_{\theta JA} \) is determined with the device mounted on a 1 in\(^2\) oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. \(R_{\theta JC} \) is guaranteed by design while \(R_{\theta JA} \) is determined by the user's board design.
 - (a) \(R_{\theta JA} = 86 \, {^\circ}C/W \) when mounted on a 1 in\(^2\) pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB. For single operation.
 - (b) \(R_{\theta JA} = 173 \, {^\circ}C/W \) when mounted on a minimum pad of 2 oz copper. For single operation.
 - (c) \(R_{\theta JA} = 69 \, {^\circ}C/W \) when mounted on a 1 in\(^2\) pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB. For dual operation.
 - (d) \(R_{\theta JA} = 151 \, {^\circ}C/W \) when mounted on a minimum pad of 2 oz copper. For dual operation.

2. Pulse Test: Pulse Width < 300 us, Duty Cycle < 2.0 %

3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.
Typical Characteristics $T_J = 25 \, ^\circ\text{C}$ unless otherwise noted

Figure 1. On-Region Characteristics

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 3. Normalized On-Resistance vs Junction Temperature

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs Source Current
Typical Characteristics $T_J = 25 \, ^\circ C$ unless otherwise noted

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs Drain to Source Voltage

Figure 9. Gate Leakage Current vs Gate to Source Voltage

Figure 10. Forward Bias Safe Operating Area

Figure 11. Single Pulse Maximum Power Dissipation
Figure 12. Junction to Ambient Transient Thermal Response Curve

Typical Characteristics \(T_J = 25 \, ^\circ\text{C} \) unless otherwise noted
Dimensional Outline and Pad Layout

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-229, VARIATION VCCC EXCEPT AS NOTED.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

⚠️ NON-JEDEC DUAL DAP

MLP06JrevC
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

- AccuPower™
- Auto-SPM™
- Build it Now™
- CorePLUS™
- CorePOWER™
- CROSSVOLT™
- CTL™
- Current Transfer Logic™
- DEUXPEED™
- Dual Cool™
- EcoSPARK™
- EffiCemMax™
- ESBC™
- F-FPS™
- FRFET™
- Global Power Resource™
- Green FPS™
- Green FPS™ e-Series™
- Gmax™
- GTQ™
- IntelliMAX™
- ISOLANAR™
- MegaBuck™
- MICROCOUPLER™
- MicroFET™
- MicroPack™
- MicroPack2™
- MillerDrive™
- MotionMax™
- Motion-SPM™
- OptiHIT™
- OPTOLOGIC®
- OPTOPLANAR®
- PDP SPM™
- Power-SPM™
- PowerTrench™
- PowerXS™
- Programmable Active Droop™
- QFET®
- QS™
- Quiet Series™
- RapidConfigure™
- Saving our world, 1mW/kW at a time™
- SignalWise™
- SmartMax™
- SMART START™
- SPM®
- STEALTH™
- SuperFET™
- SuperSOT™-3
- SuperSOT™-6
- SuperSOT™-8
- SupreMOS™
- SyncFET™
- Sync-Lock™
- TRUECURRENT™
- µSerDes™
- Ultra FRFET™
- UniFET™
- VCX™
- VisualMax™
- XS™
- XS™
- µSemi™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchilddemi.com, under Sales Support.

Counterfeit parts are a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Selenium reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

©2010 Fairchild Semiconductor Corporation
FDMA1024NZ Rev.B4
www.fairchildsemi.com