

Vishay Semiconductors

Fully Integrated Proximity and Ambient Light Sensor with Infrared Emitter and I²C Interface

DESCRIPTION

VCNL4000 is a fully integrated proximity and ambient light digital 16 bit resolution sensor in a miniature lead less package (LLP) for surface mounting. It includes a signal processing IC and supports an easy to use I²C bus communication interface.

APPLICATIONS

- Proximity sensor for mobile devices (e.g. smart phones, touch phones, PDA, GPS) for touch screen locking, power saving, etc.
- Integrated ambient light function for display/keypad contrast control and dimming of mobile devices
- Proximity/optical switch for consumer, computing and industrial devices and displays
- Dimming control for consumer, computing and industrial displays

FEATURES

- Package type: surface mount
- Dimensions (L x W x H in mm): 3.95 x 3.95 x 0.75
- Integrated module with ambient light sensor, proximity sensor and signal conditioning IC
- Supply voltage range V_{DD}: 2.5 V to 3.6 V
- Supply voltage range IR anode: 2.5 V to 5 V
- Communication via I²C interface
- I²C Bus H-level range: 1.7 V to 5 V
- Floor life: 72 h, MSL 4, acc. J-STD-020
- Low stand by current consumption: 1.5 μA
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

Note

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

PROXIMITY FUNCTION

- Built in infrared LED and photo-pin-diode for proximity function
- 16 bit effective resolution for proximity detection range ensures excellent cross talk immunity
- Programmable LED drive current from 10 mA to 200 mA (in 10 mA steps)
- Excellent ambient light suppression by signal modulation
- · Proximity distance up to 200 mm

AMBIENT LIGHT FUNCTION

- Built in ambient light photo-pin-diode with close to human eye sensitivity characteristic
- 16 bit dynamic range for ambient light detection from 0.25 lx to 16 klx
- 100 Hz and 120 Hz flicker noise rejection

PRODUCT SUMM	PRODUCT SUMMARY										
PART NUMBER	OPERATING RANGE (mm)	OPERATING VOLTAGE RANGE (V)	I ² C BUS VOLTAGE RANGE (V)	LED PULSE CURRENT ⁽¹⁾ (mA)	AMBIENT LIGHT RANGE (lx)	AMBIENT LIGHT RESOLUTION (Ix)	OUTPUT CODE				
VCNL4000	1 to 200	2.5 to 3.6	1.7 to 5	10 to 200	0.25 to 16 383	0.25	16 bit, I ² C				

Note

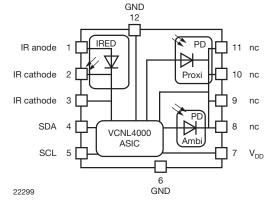
⁽¹⁾ Adjustable through I²C interface

GREEN

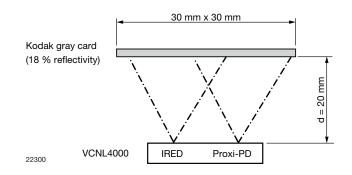
ORDERING INFORMATION										
ORDERING CODE	PACKAGING	VOLUME ⁽¹⁾	REMARKS							
VCNL4000-GS08	Tape and reel	MOQ: 1800 pcs	3.95 mm x 3.95 mm x 0.75 mm							
VCNL4000-GS18	rape and reel	MOQ: 7000 pcs	5.95 mm x 5.95 mm x 0.75 mm							
VCNL4000demokit (<u>www.vishay.com/doc?83395</u>)	-	MOQ: 1 pc	-							

Note

⁽¹⁾ MOQ: minimum order quantity


ABSOLUTE MAXIMUM RATINGS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)										
PARAMETER	TEST CONDITION	SYMBOL	MIN.	MAX.	UNIT					
Supply voltage		V _{DD}	- 0.3	5.5	V					
Operation temperature range		T _{amb}	- 25	+ 85	°C					
Storage temperature range		T _{stg}	- 40	+ 85	°C					
Total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	P _{tot}		50	mW					
Junction temperature		Tj		100	°C					

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage V _{DD}			2.5		3.6	V
Supply voltage IR anode			2.5		5	V
I ² C Bus H-level range			1.7		5	V
Current consumption	Standby current, no IRED-operation			1.5	2	μA
	2 measurements per second, IRED current 20 mA			4		μA
Current consumption proximity mode incl. IRED (averaged)	250 measurements per second, IRED current 20 mA			500		μA
	2 measurements per second, IRED current 200 mA			31		μA
	250 measurements per second, IRED current 200 mA			3.8		mA
	2 measurements per second averaging = 1			2.5		μA
Current consumption ambient	8 measurements per second averaging = 1			10		μA
light mode	2 measurements per second averaging = 64			160		μA
	8 measurements per second averaging = 64			635		μA
Ambient light resolution	Digital resolution (LSB count)			0.25		lx
Ambient light output	E _V = 100 lx averaging = 64			400		counts
I ² C clock rate range		f _{SCL}			3400	kHz



Vishay Semiconductors

CIRCUIT BLOCK DIAGRAM

TEST CIRCUIT

Note

nc must not be electrically connected . Pads 8 to 11 are only considered as solder pads

BASIC CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)

100 °C

80 °C

3.8

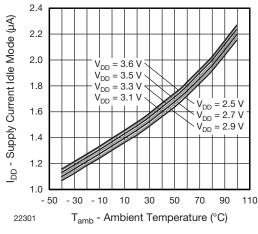
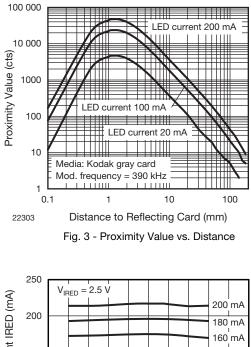
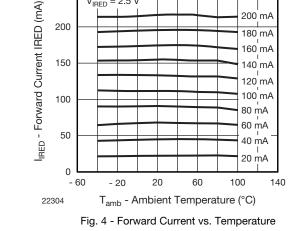




Fig. 1 - Idle Current vs. Ambient Temperature

I_{DD} - Supply Current Idle Mode (µA) 1.8 55 °C 1.6 25 °C 1.4 -10 °C 1.2 - 40 ċC 1.0 2.4 2.6 2.8 3.0 3.2 3.4 3.6 V_{DD} - Supply Voltage (V) 22302 Fig. 2 - Idle Current vs. V_{DD}

Rev. 1.6, 24-Aug-11

2.4

2.2

2.0

3 For technical questions, contact: sensorstechsupport@vishay.com Document Number: 83798

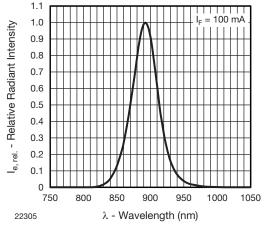


Fig. 5 - Relative Radiant Intensity vs. Wavelength

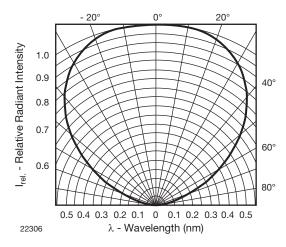


Fig. 6 - Relative Radiant Intensity vs. Angular Displacement

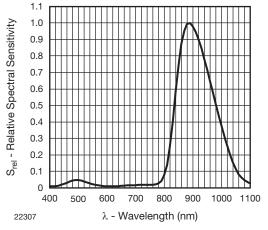


Fig. 7 - Relative Spectral Sensitivity vs. Wavelength

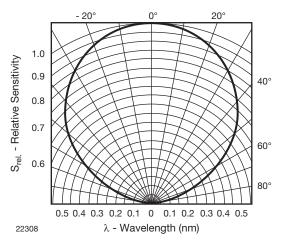


Fig. 8 - Relative Radiant Sensitivity vs. Angular Displacement

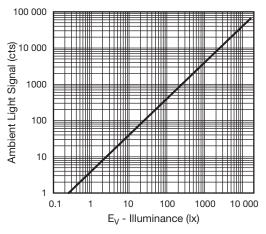


Fig. 9 - Ambient Light Value vs. Illuminance

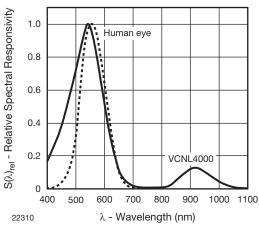


Fig. 10 - Relative Spectral Sensitivity vs. Wavelength

Rev. 1.6, 24-Aug-11

4 For technical questions, contact: <u>sensorstechsupport@vishay.com</u>

Document Number: 83798

Vishay Semiconductors

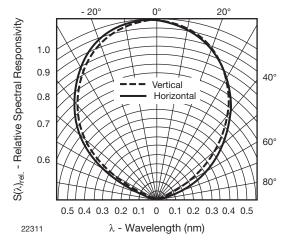
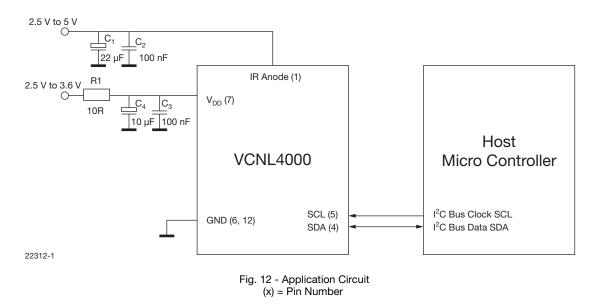



Fig. 11 - Relative Radiant Sensitivity vs. Angular Displacement

APPLICATION INFORMATION

VCNL4000 is a cost effective solution of proximity and ambient light sensor with I²C Bus interface. The standard serial digital interface is easy to access "Proximity Signal" and "Light Intensity" without complex calculation and programming by external controller.

1. Application Circuit

2. I²C Interface

The VCNL4000 contains twelve 8 bit registers for operation control, parameter setup and result buffering. All registers are accessible via I²C communication. Figure 13 shows the basic I²C communication with VCNL4000.

The built in I²C interface is compatible with all I²C modes (standard, fast and high speed).

 I^2C H-level range = 1.7 V to 5 V.

Please refer to the I²C specification from NXP for details.

Send byte Write command to VCNL4000 Slave address Wr Register address Data byte Ρ s A А А Receive byte Read data from VCNL4000 s Slave address Wr A Register address Ρ А s Data byte Ρ Slave address Rd A A S = start condition Host action P = stop condition 22313 A = acknowledge VCNL4000 response

Fig. 13 - Send Byte/Receive Byte Protocol

Register Addresses

VCNL4000 has twelve user accessible 8 bit registers. The

register addresses are 80h (register #0) to 8Bh (register #11).

Device Address

The VCNL4000 has a fix slave address for the host programming and accessing selection. The predefined 7 bit I²C bus address is set to 0010 011 = 13h. The least significant bit (LSB) defines read or write mode. Accordingly the bus address is set to $0010\ 011x = 26h$ for write, 27h for read.

REGISTER FUNCTIONS

Register #0 Command Register

Register address = 80h

The register #0 is for starting ambient light or proximity measurements. This register contains 2 flag bits for data ready indication.

TABLE 1 -	TABLE 1 - COMMAND REGISTER #0										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
config_lock	als_data_rdy	prox_data_rdy	als_od	prox_od	N/A	N/A	N/A				
			Desci	iption							
config	g_lock			Read only b	it. Value = 1						
als_da	als_data_rdy Read only bit. Value = 1 when ambient light measurement data is available in the result registers. This will be reset when one of the corresponding result registers (reg #5, reg #6) is read.										
prox_d	lata_rdy			imity measuremer the corresponding							
als	R/W bit. Starts a single on-demand measurement for ambient light. If averaging is enabled, starts a als_od sequence of readings and stores the averaged result. Result is available at the end of conversion fo reading in the registers #5(HB) and #6(LB).										
prox_od R/W bit. Starts a single Result is available at the end of cor							nd #8(LB).				

With setting bit 3 and bit 4 at the same write command, a simultaneously measurement of ambient light and proximity is done.

Vishay Semiconductors

Register #1 Product ID Revision Register

Register address = 81h. This register contains information about product ID and product revision.

Register data value of current revision = 11h.

TABLE 2 -	TABLE 2 - PRODUCT ID REVISION REGISTER #1										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0							
	Produ	uct ID		Revision ID							
			Descr	ription							
Prod	uct ID			Deed ask hits Makes 1							
Revision ID			Read only bits. Value = 1								

Register #2 without Function in Current Version

Register address = 82h.

Register #3 LED Current Setting for Proximity Mode

Register address = 83h. This register is to set the LED current value for proximity measurement.

The value is adjustable in steps of 10 mA from 0 mA to 200 mA.

This register also contains information about the used device fuse program ID.

TABLE 3 -	TABLE 3 - IR LED CURRENT REGISTER #3										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Fuse prog ID IR LED current value											
Description											
Fuse p	Fuse prog ID Read only bits. Information about fuse program revision used for initial setup/calibration of the device.										
IR LED cu	R/W bits. IR LED current = Value (dec.) x 10 mA.IR LED current valueValid Range = 0 to 20d. e.g. 0 = 0 mA , 1 = 10 mA,, 20 = 200 mA (2 = 20 mA = DEFAULT)LED Current is limited to 200 mA for values higher as 20d.										

Register #4 Ambient Light Parameter Register

Register address = 84h.

TABLE 4 -	AMBIENT LI	GHT PARAM	ETER REGIS	TER #4					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Cont. conv. mode		N/A		Auto offset compensation		Averaging function (number of measurements per run)			
	•		Desc	ription					
Bit 7 Enable = 1; Disable = 0 = DEFAULT Cont. conversion mode This function can be used for performing faster ambient light measurements. Please rapplication information chapter 3.3 for details about this function.						e refer to the			
R/W bit. Automatic of Enable = 1 = DEF/ Bit 3 Auto offset compensation Auto offset compensation With active auto offset compensation the offset value and subtracted automatic					AULT; Disable = 0 emperature relate ffset compensation is measured before) ed drift of the amb on function. re each ambient lig	Ū		
Bit 0 to bit 2				R/W bits. Averaging function. of single conversions done during one measurement cycle. Result is the average value of all conversions. 2 ^{decimal_value} e.g. 0 = 1 conv., 1 = 2 conv, 2 = 4 conv.,7 = 128 conv. DEFAULT = 32 conv.					

Rev. 1.6, 24-Aug-11

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Semiconductors

Register #5 and #6 Ambient Light Result Register

Register address = 85h and 86h. These registers are the result registers for ambient light measurement readings. The result is a 16 bit value. The high byte is stored in register #5 and the low byte in register #6.

TABLE 5 - AMBIENT LIGHT RESULT REGISTER #5										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Description									
	Read only bits. High byte (15:8) of ambient light measurement result									

TABLE 6 -	TABLE 6 - AMBIENT LIGHT RESULT REGISTER #6										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
	Description										
	Read only bits. Low byte (7:0) of ambient light measurement result										

Register #7 and #8 Proximity Measurement Result Register

Register address = 87h and 88h. These registers are the result registers for proximity measurement readings. The result is a 16 bit value. The high byte is stored in register #7 and the low byte in register #8.

TABLE 7 - PROXIMITY RESULT REGISTER #7										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Description										
	Read only bits. High byte (15:8) of proximity measurement result									

TABLE 8 - PROXIMITY RESULT REGISTER #8										
Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
Description										
Read only bits. Low byte (7:0) of proximity measurement result										

Register #9 Proximity Measurement Signal Frequency

Register address = 89h.

TABLE 9 - PROXIMITY MEASUREMENT SIGNAL FREQUENCY #9											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
		Proximity frequency									
Description											
Bit 0 and 1 Proximity frequency		R/W bits. Setting the proximity IR test signal frequency. The proximity measurement is using a square IR signal as measurement signal. Four different values are possible: 00 = 3.125 MHz 01 = 1.5625 MHz 02 = 781.25 kHz (DEFAULT) 03 = 390.625 kHz									

Register #10 Proximity Modulator Timing Adjustment

Register address = 8Ah.

TABLE 10 - PROXIMITY MODULATOR TIMING ADJUSTMENT #10											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Modulation delay time			N/A		Modulation dead Time						
Description											
Modulatior	n delay time	R/W bits. Setting a delay time between IR LED signal and IR input signal evaluation. This function is for compensation of delays from IR LED and IR photo diode. Also in respect to the possibility for setting different proximity signal frequency. Correct adjustment is optimizing measurement signal level.									
Modulation	i dead Time	R/W bi	R/W bits. Setting a dead time in evaluation of IR signal at the slopes of the IR signal. This function is for reducing of possible disturbance effects. This function is reducing signal level and should be used carefully.								

Note

• The settings for best performance will be provided by Vishay. With first samples this is evaluated to: delay time = 4 and dead time = 1, with that register #10 should be programmed with: 129 (dez.)

Register #11 Ambient IR Light Level Register

Register address = 8Bh.

This register is not intended to be used by customer.

3. IMPORTANT APPLICATION HINTS AND EXAMPLES

3.1 Receiver standby mode

In standby mode the receiver has the lowest current consumption of about 1.5 μ A. In this mode only the I²C interface is active. This is always valid, when there are no measurement demands for proximity and ambient light executed. Also the current sink for the IR-LED is inactive, so there is no need for changing register #3 (IR LED current).

3.2 Data Read

In order to get a certain register value, the register has to be addressed without data like shown in the following scheme. After this register addressing, the data from the addressed register is written after a subsequent read command.

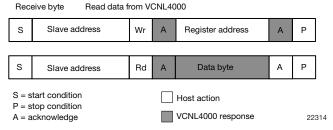


Fig. 14 - Send Byte/Receive Byte Protocol

The stop condition between these write and read sequences is not mandatory. It works also with a repeated start condition.

Note

• For reading out 2 (or more) subsequent registers like the result registers, it is not necessary to address each of the registers separately. After one read command the internal register counter is increased automatically and any subsequent read command is accessing the next register.

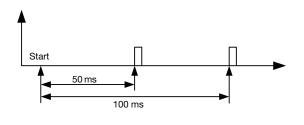
Example: read register "Ambient Light Result Register" #5 and #6:

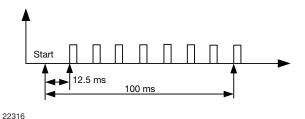
Addressing:command: 26h, 85h (VCNL4000_l²C_Bus_Write_Adr., Ambient Light Result Register #5 [85])

Read register #5:command: 27h, data (VCNL4000_l²C_Bus_Read_Adr., {High Byte Data of Ambient Light Result Register #5 [85])} Read register #6:command: 27h, data (VCNL4000_l²C_Bus_Read_Adr., {Low Byte Data of Ambient Light Result Register #6 [86])}

Vishay Semiconductors

www.vishay.com


3.3 Continuous Conversion Mode in Ambient Light Measurement


In the following is a detail description of the function "continuous conversion" (bit 7 of register #4)

Standard mode (bit 7 of reg #4 = 0):

In standard mode the ambient light measurement is done during a fixed time frame of 100 ms. The single measurement itself takes actually only appr. 300 µs.

The following figures show examples of this measurement timing in standard mode using averaging function 2 and 8 as examples for illustration (possible values up to 128).

22315

Fig. 15 - Ambient Light Measurement with Averaging = 2; Final Measurement Result = Average of these 2 Measurements Fig. 16 - Ambient Light Measurement with Averaging = 8; Final Measurement Result = Average of these 8 Measurements

Note

• ≥ Independent of setting of averaging the result is available only after 100 ms.

Continuous conversion mode (bit7 of reg #4 = 1):

In continuous conversion mode the single measurements are done directly subsequent after each other.

See following examples in figure 17 and 18

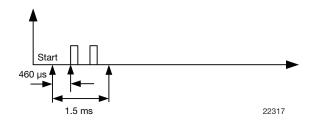
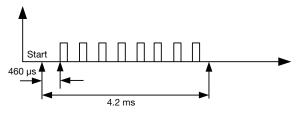



Fig. 17 - Ambient Light Measurement with Averaging = 2; using Continuous Conversion Mode

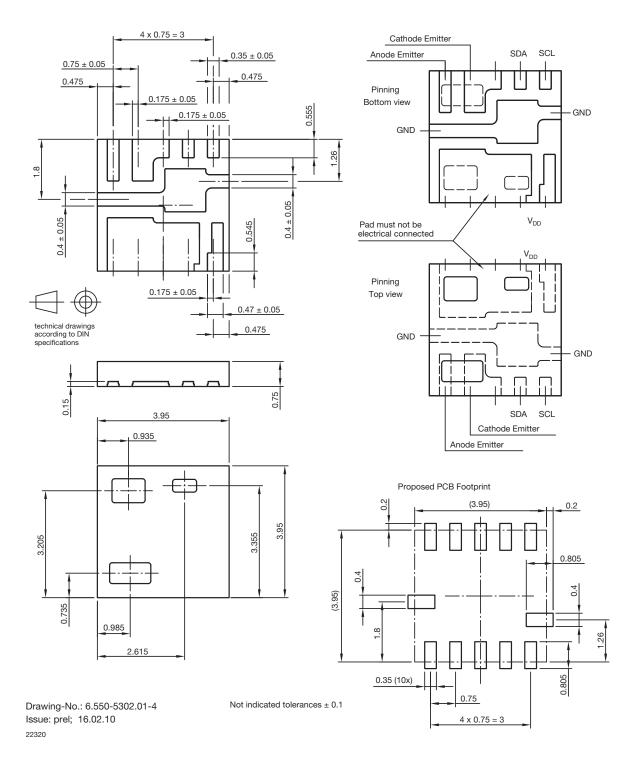
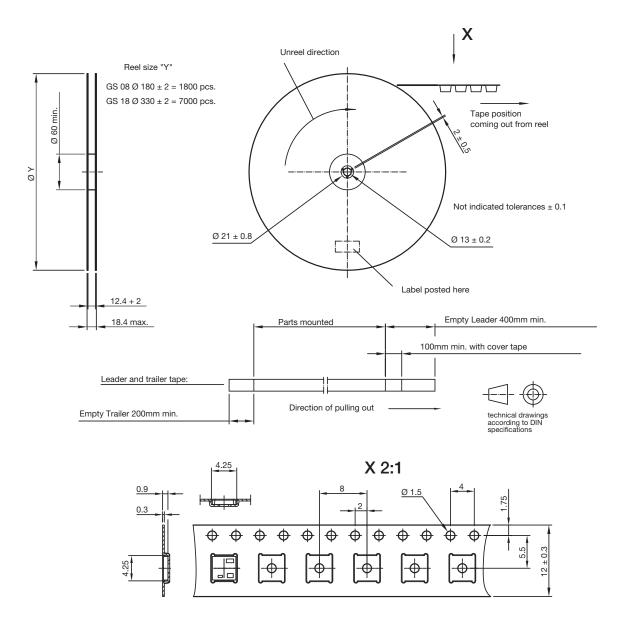
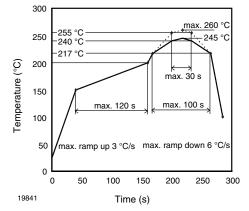

22318

Fig. 18 - Ambient Light Measurement with Averaging = 8; using Continuous Conversion Mode



PACKAGE DIMENSIONS in millimeters


TAPE AND REEL DIMENSIONS in millimeters

Drawing-No.: 9.800-510301-4 Issue: prel; 02.12.09 22319

SOLDER PROFILE

www.vishay.com

Fig. 19 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

Floor life: 72 h

Conditions: T_{amb} < 30 °C, RH < 60 %

Moisture sensitivity level 4, acc. to J-STD-020.

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 °C (+ 5 °C), RH < 5 %.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.